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N-Acyliminium ions are highly reactive electrophilic spedies

that have been demonstrated only recently to engage successfully Ri

in asymmetric catalytic reactiods? Our own studies in this area
led to the discovery that the chiral thiourea derivathagpromotes
highly enantioselective PicteSpengler- and Mannich-type reac-
tions through initial acylation of imines and isoquinolines, respec-
tively.3 The process by which the resultihgacyliminium ions are
induced to undergo enantioselective additions with a simple
hydrogen-bond donor catalyst suchlads intriguing. Two limiting
mechanisms consisting of $and &2 pathways may be considered
(eq 1), but in neither case is the mode of catalyst interaction with
Ri tBu s
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the enantioselectivity-determining transition state apparent. In efforts
to glean insight into this reaction mechanism while broadening the
scope of the reaction class in synthetically interesting new direc-
tions, we have investigated the acid-catalyzed cyclization of
B-indolyl ethyl hydroxylactams (Table 2)We report herein the
successful application of thiourea catalysis to the PicBgengler-
type cyclization of such compounds, affording highly enantioen-
riched indolizidinones and quinolizidinones. Key experimental
observations, supported by DFT computational analyses, point to
an Syl-type pathway in these cyclizations, with catalysis via a
heretofore unprecedented anion-binding mechanism.

A model reaction?a— 3a) was examined under a broad set of
conditions, with catalyst structure, solvent, additive, temperature,
and concentration identified as crucial parameteks.in the case
of the acylativeN-acyl-Pictet-Spengler andN-acyl-Mannich reac-
tions? pyrrole-thiourea derivatives of general structdr@roved
optimal, with compounds bearing the 2-methyl-5-phenylpyrrole
substituent affording highest ee’s. Thémethylpentyl amide
derivativelb was established as the most enantioselective catalyst.
A thorough screen of acidic additives revealed that either chlorot-
rimethylsilane or the combination of HCl d8 A molecular sieves
afforded high levels of conversion and enantioselectivity, but that
water had a deleterious effect on catalyst activity. Finally, a quite
significant inverse correlation between conversion and reaction
concentration was observed, with reactions run at lower concentra-
tions affording substantially improved yields.

Under the optimal reaction conditions, good-to-excellent yields
and enantioselectivities were obtained in the cyclization of hy-
droxylactams derived from a variety of succinimide and glutarimide
precursors (Table 1). Hydroxylactams generated either by imide
reduction using NaBldor by imide alkylation with organolithium
reagents were suitable substrates, with the latter undergoing
cyclization under milder conditions—<78 °C, 12 to 48 h), and
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Table 1. Asymmetric Cyclization of Hydroxylactams Catalyzed by 1b

1b (10 mol%) R4
{ N TMSCI, TBME . { N_O
2 N HON -55°Cor-78°C* 2 N )
Ry H R, N=12 24-72h Rs H ReMy,
2a-o 3a-o
yield? ee’
entry product substituents (%) (%)
n=1
1 3a Ri=R;=R3=Rs=H 90 97
2 3b R]_: OCH’;, R2: R3= R4= H 86 95
3 3c Ri=H, R, =0CH;, Rs=R4=H 51 90
4 3d Ri=Br,R,.=R3=Rs=H 88 96
5 3e Ri=F,R=Rs=Rs=H 89 99
6 3f Ri=H,R,=F, Rs=Rs;=H 94 97
7 3g Ri=R;=H,R3=CH3;, Ry=H 91 93
8 3h  Ri=Rp=Rs=H,Ri=CHs 92 9
9 3i Ri=R;=R3=H, Ry=n-Bu 74 98
10 3] Ri1=R;=R3=H, Ry= CgHs 68 85
1 3k R1=OCHs, Ro=R3=H, Ry=CHs 84 91
n=2
12 3l Ri=R;=R3=R4=H 52 81
13 3m Ri=Ry=R3=H, Ry= CH3 63 92
14 3n Ri=R;=R3=H, R;=n-Bu 65 96
59 88
154 30 . N

=

N
R Ch,

aUnless noted otherwise, reactions of hydroxylactams generated by
NaBH, reduction were carried out at55 °C, while those generated by
alkylation were run at—78 °C.PIsolated yield determined after flash
chromatography on SiO° Determined by chiral SFC analysis on com-
mercial columns. The absolute configuratiorBdfwas established by X-ray
crystallographic analysis (see Supporting Informatiéieaction run for

72 h at—55 °C with 15 mol % oflb.
N N N
H H H H H

3a, 97% ee (+)-harmicine, 97% ee

aConditions: (a) succinic anhydride, toluene/AcOH (1:3), 220 24

h; (b) NaBH,;, MeOH, 0°C; (c) 1b (10 mol %), TMSCI, TBME,—55 °C,
48 h; (d) LiAlH4, THF, rt, 16 h.

Scheme 1. Total Synthesis of (+)-Harmicine?@

d
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65%
(overall)

providing products bearing fully substituted stereogenic centers.
Hydroxylactam2o, accessed via maleimide alkylation, was also
useful in this reaction, affording the synthetically versatilg-
unsaturated addu@o (entry 15).

In a straightforward demonstration of the applicability of this
new methodology, we applied the enantioselective hydroxylactam
cyclization to the total synthesis oftj-harmicine (Scheme 7).
The cyclization ta3a proceeded in 97% ee, with subsequent LiAIH
reduction affording the natural product in only four steps from
tryptamine. The synthesis, which employs no protecting groups and
generates only kD, B(OH), and AI(OH)} as stoichiometric

10.1021/ja076179w CCC: $37.00 © 2007 American Chemical Society
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Table 2. Substituent, Counterion, and Solvent Effect Studies

1b(10 mol%)
oy 43 S y®
N HO solvent N
temp., time H R
temp time conva ee?
entry solvent X R (°C) (h) (%) (%)
1 TBME Cl H —78 8 12 99
2 TBME Cl CHs —78 8 94 96
3 TBME Cl H —55 23 80 97
4 TBME Br H —55 23 82 68
5 TBME | H —55 23 75 <5
6 TBME Cl H —55 8 65 97
7 THF Cl H —55 8 >95 34
8 CH.Cl> Cl H —55 8 >95 <5

aDetermined by!H NMR. P Determined by chiral SFC analysis on
commercial columns.

Scheme 2. Proposed Reaction Mechamism
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byproducts allowed assignment of the absolute configuration of
3agenerated usingb asR.

Spectroscopic (variable temperatéifeNMR) studies of reaction
mixtures generated from hydroxylacté®a and TMSCI indicated
that formal dehydration and formation of the corresponding
chlorolactar is rapid and irreversibl&.Further, the observation

precedented in chiral phase-transfer catalysisd has recently been
demonstrated in the context of asymmetric counterion-directed
catalysisi® We anticipate that asymmetric catalysis via anion-
binding mechanisms may be applicable to a wide variety of valuable
transformations involving highly reactive cationic intermediates,
and this is a focus of our current effort.
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